Среда, 13.12.2017, 18:01
Приветствую Вас Гость | RSS
Главная » Статьи » Каталог статей

Заземление в системах промышленной автоматики. Часть 1-я.

Неправильное заземление в 40% случаев является причиной дорогостоящих простоев и порчи чувствительного оборудования, используемого в нефтяной, автомобильной и горной промышленности. Следствием неправильного заземления могут быть изредка появляющиеся сбои в работе систем, повышенная погрешность измерений, выход из строя чувствительных элементов, замедление работы системы вследствие появления потока ошибок в каналах обмена, нестабильность регулируемых параметров, ошибки в собираемых данных. Вопросы заземления тесно связаны с проблемами экранирования и методами борьбы с помехами в электронных системах.

Заземление является самой плохо понимаемой темой в автоматизации.

Сложность проблемы связана с тем, что источники помех, приёмники и пути их прохождения распределены в пространстве, момент их появления часто является случайной величиной, а местонахождение априори неизвестно. Сложно также провести измерения помех. Практически невозможно сделать и достаточно точный теоретический анализ, поскольку задача обычно является трёхмерной и описывается системой дифференциальных уравнений в частных производных.

Поэтому обоснование того или иного метода заземления, которое, строго говоря, должно опираться на математические расчёты, на практике приходится делать на основании опыта и интуиции. Решение проблем заземления в настоящее время находится на грани между пониманием, интуицией и везением.

Изучение влияния помех, связанных с неправильным заземлением, сводится к составлению правдоподобных упрощённых моделей системы, включающей источники, приёмники и пути прохождения помехи, с последующим анализом их влияния на характеристики системы и синтезом методов борьбы с ними.

Мы не будем рассматривать вопросы заземления энергетических электроустановок. Это отдельная тема, которая достаточно подробно рассмотрена в литературе по электроэнергетике. В настоящей статье речь идёт только о заземлении, используемом в системах промышленной автоматизации для обеспечения их стабильного функционирования, а также о заземлении с целью защиты персонала от поражения электрическим током, поскольку эти два вопроса невозможно рассматривать изолированно один от другого, не нарушая стандартов системы безопасности труда. 

Определения

Под заземлением понимают как соединение с грунтом Земли, так и соединение с некоторым "общим проводом" электрической системы, относительно которого измеряют электрический потенциал. Например, в космическом корабле или самолёте "землёй" считают металлический корпус. В приёмнике с батарейным питанием за "землю" принимают систему внутренних проводников, которые являются общим проводом для всей электронной схемы. В дальнейшем мы будем использовать именно такое понятие "земли", не заключая больше это слово в кавычки, поскольку оно давно стало физическим термином. Потенциал земли в электрической системе не всегда равен нулю относительно грунта Земли. Например, в летящем самолёте за счёт генерации электростатического заряда потенциал земли (корпуса) самолёта может составлять сотни и тысячи вольт относительно поверхности Земли.

Аналогом земли космического корабля является "плавающая" земля" — не соединённая с грунтом Земли система проводников, относительно которой отсчитывается потенциал в электрической подсистеме. Например, в модуле аналогового ввода с гальванической развязкой внутренняя аналоговая земля модуля может не соединяться с грунтом Земли или соединяться с ним через большое сопротивление, скажем, 20 МОм.

Под защитным заземлением понимают электрическое соединение проводящих частей оборудования с грунтом Земли через заземляющее устройство с целью защиты персонала от поражения электрическим током.

Заземляющим устройством называют совокупность заземлителя (то есть проводника, соприкасающегося с землёй) и заземляющих проводников.

Общим проводом (проводником) называют проводник в системе, относительно которого отсчитываются потенциалы. Обычно он является общим для источника питания и подключённых к нему электронных устройств.

Примером может быть провод, общий для всех 8 входов 8 канального модуля аналогового ввода с одиночными (недифференциальными) входами. Общий провод во многих случаях является синонимом земли, но он может быть вообще не соединён с грунтом Земли.

Сигнальным заземлением называют соединение с землёй общего провода цепей передачи сигнала.

Сигнальная земля делится на цифровую землю и аналоговую. Сигнальную аналоговую землю иногда делят на землю аналоговых входов и землю аналоговых выходов.

Силовой землёй будем называть общий провод в системе, соединённый с защитной землей, по которому протекает большой ток (большой по сравнению с током для передачи сигнала).

В основе такого деления земель лежит различный уровень чувствительности к помехам аналоговых и цифровых цепей, а также сигнальных и мощных (силовых) цепей и, как правило, гальваническая развязка между указанными землями в системах промышленной автоматизации.

Глухозаземлённой нейтралью называется нейтраль трансформатора или генератора, присоединённая к заземлителю непосредственно или через малое сопротивление (например, через трансформатор тока).

Нулевым проводом называется провод сети, соединённый с глухозаземлённой нейтралью.

Изолированной нейтралью называется нейтраль трансформатора или генератора, не присоединённая к заземляющему устройству.

Занулением называют соединение оборудования с глухозаземлённой нейтралью трансформатора или генератора в сетях трёхфазного тока или с глухозаземлённым выводом источника однофазного тока.

Далее мы будем также использовать термин "кондуктивный" – от слова conductor (проводник), то есть связанный с проводимостью материала. Например, кондуктивная помеха наводится через проводник, соединяющий две цепи. 

Цели заземления 

Защитное заземление служит исключительно для защиты людей от поражения электрическим током.

Необходимость выполнения защитного заземления часто приводит к увеличению уровня помех в системах автоматизации, однако это требование является необходимым, поэтому исполнение сигнальной и силовой земли должно базироваться на предположении, что защитное заземление имеется и оно выполнено в соответствии с ПУЭ. Защитное заземление можно не применять только для оборудования с напряжением питания до 42 В переменного или 110 В постоянного тока, за исключением взрывоопасных зон.

Подробнее см. раздел "Заземление на взрывоопасных промышленных объектах" и ПУЭ (гл. 1.7).

Правила заземления для уменьшения помехи от сети 50 Гц в системах автоматизации зависят от того, используется ли сеть с глухозаземлённой или с изолированной нейтралью. Заземление нейтрали трансформатора на подстанции выполняется с целью ограничения напряжения, которое может появиться на проводах сети 220/380 В относительно Земли при прямом ударе молнии или в результате случайного соприкосновения с линиями более высокого напряжения, или в результате пробоя изоляции токоведущих частей распределительной сети.

Электрические сети с изолированной нейтралью используются для избежания перерывов питания потребителя при единственном повреждении изоляции, поскольку при пробое изоляции на землю в сетях с глухозаземлённой нейтралью срабатывает защита и питание сети прекращается.

Кроме того, в цепях с изолированной нейтралью при пробое изоляции на землю отсутствует искра, которая неизбежна в сетях с глухозаземлённой нейтралью. Это свойство очень важно при питании оборудования во взрывоопасной зоне. В США в нефтегазовой и химической промышленности используется также заземление нейтрали через сопротивление, ограничивающее ток на землю в случае короткого замыкания.

Сигнальная земля служит для упрощения электрической схемы и удешевления устройств и систем промышленной автоматизации. При использовании сигнальной земли в качестве общего провода для разных цепей появляется возможность применения одного общего источника питания для всей электрической цепи вместо нескольких "плавающих" источников питания. Электрические цепи без общего провода (без земли) всегда можно преобразовать в цепи с общим проводом и наоборот по правилам, изложенным в работе.

В зависимости от целей применения сигнальные земли можно разделить на базовые и экранные. Базовая земля используется для отсчёта и передачи сигнала в электронной цепи, а экранная земля используется для заземления экранов.

Базовая сигнальная земля используется также для "привязки" потенциала изолированной части электрической цепи к земле системы. Например, если входные каскады модуля ввода сигналов термопар имеют гальваническую развязку от земли системы, то потенциал входов может быть каким угодно вследствие заряда паразитной ёмкости между землёй и входными каскадами. Во время грозы этот потенциал может составить тысячи вольт (см. раздел "Молния и атмосферное электричество"), что приведёт к пробою гальванической изоляции модуля. Для предотвращения этого явления аналоговая земля входных каскадов (обозначается как A.GND в модулях RealLab! и ADAM) должна быть соединена с землёй системы, как это будет описано далее.

Экранная земля используется для заземления экранов кабелей, экранирующих перегородок, корпусов приборов, а также для снятия статических зарядов с трущихся частей транспортёрных лент, ремней электроприводов и т.п. 

Общие вопросы заземления 

Большинство проблем заземления возникают вследствие необходимости защиты человека от поражения электрическим током. В этом смысле было бы лучше, если бы Земля и человек состояли из диэлектрика. С Землёй соединена нейтраль трансформатора электрической подстанции, она является частью генератора электростатического заряда во время грозы, обкладкой паразитных ёмкостей и проводником, в котором за счёт явления электромагнитной индукции наводятся токи. Земля как проводник участвует практически в любой электрической системе, и её наличие нельзя игнорировать. 

Защитное заземление зданий

В качестве защитных заземляющих проводников используют естественные и искусственные заземлители. К естественным заземлителям относятся, например, стальные и железобетонные каркасы производственных зданий, металлические конструкции производственного назначения, стальные трубы электропроводок, алюминиевые оболочки кабелей, металлические стационарные открыто проложенные трубопроводы всех на значений, за исключением трубопроводов горючих и взрывоопасных веществ, канализации и центрального отопления. Если их проводимость удовлетворяет требованиям к заземлению, то дополнительные проводники для заземления не используются. Возможность использования железобетонного фундамента здания объясняется тем, что удельное сопротивление влажного бетона примерно равно удельному сопротивлению земли (150... 300 Ом•м).

Искусственные (специально изготовленные) заземлители используют, когда сопротивление заземления превышает установленные ПУЭ нормы.

Конструктивно они представляют собой трубы, уголки, пруты, помещённые в землю вертикально на глубину 3 м или горизонтально на глубину не менее 50…70 см. Для улучшения равномерности распределения потенциала земли (для уменьшения "напряжения шага") используют несколько заземлителей, соединяя их стальной полосой. На электрических подстанциях используют сетку заземлителей.

При соединении заземлителей между собой не рекомендуется образовывать замкнутый контур большой площади, поскольку он является "антенной", в которой может циркулировать большой ток во время разрядов молнии.

Лучшие результаты получаются присоединении заземлителей в форме сетки, когда площадь каждого контура сетки много меньше общей площади, охватываемой заземлителями. Различные конструкции заземляющих устройств приведены в Справочнике: "Заземляющие устройства электроустановок" Р.Н.Карякин.

Несмотря на рекомендации многих авторов избегать контуров при выполнении разводки шин заземления по зданию, на практике, например при использовании естественных заземлителей, избежать этого часто не удаётся. Железобетонные конструкции промышленных зданий содержат металлические арматурные прутья, которые соединяются между собой сваркой. Таким образом, система заземления здания представляет собой металлическую клетку, нижняя часть которой электрически соединена с грунтом. Монтажная организация обеспечивает надёжный контакт между собой всех металлических конструкций здания и оформляет акты на скрытые работы.

Заземляющий контакт для подключения оборудования при этом представляет собой болт заземления, приваренный к металлической закладной конструкции элемента колонны или фундамента здания.

При монтаже систем заземления нужно избегать зазоров в контурах, на которые может наводиться эдс магнитным полем молнии, чтобы избежать появления искры и возможного возгорания горючих веществ в здании.

В зданиях для размещения связного оборудования систему проводников заземления выполняют в виде сетки. Сетка выполняет одновременно функции заземления и электромагнитного экрана здания. На электростанциях в помещении с устройствами промышленной автоматики стены и потолок экранируют стальными плитами, окна и отверстия для кондиционирования закрывают медной сеткой, пол выполняют из электропроводного пластика. Необходимо обращать внимание на качество контактов в цепи заземления.

В статье: Burleson J. Wiring and grounding to prevent power quality problems with industrial equipment // Textile, Fiber and Film Industry Technical Conference, 89 May,1991. Р. 5/15/6 описан случай, когда плохо затянутый болт в цепи заземления приводил к сбоям в работе системы, причину которых искали несколько лет. При конструировании заземления нельзя использовать контакты разнородных металлов, чтобы не образовывались гальванические пары, являющиеся местами быстрой коррозии.

При монтаже аппаратуры в построенном здании система заземляющих проводников, как правило, уже смонтирована, и шина защитного заземления разведена по зданию. 

Автономное заземление 

К системе защитного заземления промышленного объекта могут быть подключены силовые установки, которые поставляют большой ток помехи в провод заземления. Поэтому для точных измерений может потребоваться отдельная земля, выполненная по технологии искусственного заземления в грунт. Такое заземление соединено с общим заземлением здания только в одной точке для целей выравнивания потенциала между разными землями, что важно при ударе молнии.

Второй вариант автономной, "чистой" земли можно получить с помощью изолированного провода, который нигде не соединяется с металлическими конструкциями здания, но соединяется с основной клеммой заземления у ввода нейтрали питающего фидера в здание. Шину такого заземления делают из меди, её поперечное сечение составляет не менее 13 кв. мм.

Заземляющие проводники 

Проводники, соединяющие оборудование с заземлителем, должны быть по возможности короткими, чтобы снизить их активное и индуктивное сопротивление. Для эффективного заземления на частотах более 1 МГц проводник должен быть короче 1/20, а лучше 1/50 длины волны самой высокочастотной гармоники в спектре помехи (см. также раздел "Модель земли"). При частоте помехи 10 МГц (длина волны 30 м) и длине проводника 7,5 м (1/4 от длины волны) модуль его комплексного сопротивления на частоте помехи будет равен бесконечности, то есть такой проводник можно использовать в качестве изолятора, но не для заземления.

При наличии фильтров в системе автоматизации за максимальную частоту влияющей помехи можно принимать верхнюю граничную частоту фильтра.

Чтобы снизить падение напряжения на заземлителе, надо уменьшать его длину. Индуктивное сопротивление провода заземления на частоте помехи f равно:

XL = 2 π f L l ,

где L — погонная индуктивность провода, в типовых случаях равная примерно 0,8 мкГн/м, l – длина провода.

Если провода заземления располагаются близко один от другого, то между ними возникает передача помехи через взаимную индуктивность, что особенно существенно на высоких частотах.

Провода заземления не должны образовывать замкнутых контуров, которые являются приёмниками (антеннами) электромагнитных наводок.

Заземляющий проводник не должен касаться других металлических предметов, поскольку такие случайные нестабильные контакты могут быть источником дополнительных помех.

Модель земли 

На основании изложенного можно предложить электрическую модель системы заземления, показанную на рис. 1. При составлении модели предполагалось, что система заземления состоит из заземляющих электродов, соединённых между собой сплошной шиной заземления, к которой приварена пластина (клемма) заземления. К клемме заземления подсоединяются, к примеру, две шины (два проводника) заземления, к которым в разных местах подключается заземляемое оборудование.

Если шины заземления или заземляющие проводники проходят близко один от другого, то между ними существует магнитная связь с коэффициентом взаимной индукции M (рис. 1).

 

Рис. 1 Электрическая модель системы заземления

 

Рис. 2 Зависимость модуля комплексного сопротивления заземляющего проводника от длины провода.

 

Каждый участок проводника (шины) системы заземления имеет индуктивность Lij, сопротивление Rij, и в нём наводится эдс Eij путём электромагнитной индукции. На разных участках шины заземления к ней подсоединено оборудование системы автоматизации, которое поставляет в шину заземления ток помехи In21... In23, вызванный описываемыми в разделе "Источники помех на шине земли" причинами, и ток питания, возвращающийся к источнику питания по шине земли. На рис. 1 изображено также сопротивление между заземляющими электродами RЗемли и ток помехи InЗемли, протекающий по земле, например, при ударах молнии или при коротком замыкании (к.з.) на землю мощного оборудования.

Если шина сигнального заземления используется одновременно для питания системы автоматизации (этого нужно избегать), то необходимо учитывать её сопротивление. Сопротивление медного провода длиной 1 м и диаметром 1 мм равно 0,022 Ом. В системах промышленной автоматизации при расположении датчиков на большой площади, например в элеваторе или цехе, длина заземляющего проводника может достигать 100 м и более. Для проводника длиной 100 м сопротивление составит 2,2 Ом. При количестве модулей системы автоматизации, питаемых от одного источника, равном 20, и токе потребления одного модуля 0,1 А падение напряжения на сопротивлении заземляющего проводника составит 4,4 В.

При частоте помехи более 1 МГц возрастает роль индуктивного сопротивления цепи заземления, а также ёмкостной и индуктивной связи между участками цепей заземления. Провода заземления начинают излучать электромагнитные волны и сами становятся источниками помех.

На высоких частотах проводник заземления или экран кабеля, проложенный параллельно полу или стене здания, образует совместно с заземлёнными металлическими конструкциями здания длинную линию с волновым сопротивлением порядка 500...1000 Ом, короткозамкнутую на конце. Поэтому сопротивление проводника для высокочастотных помех определяется не только его индуктивностью, но и явлениями, связанными с интерференцией между падающей волной помехи и отражённой от заземлённого конца провода.

Зависимость модуля комплексного сопротивления проводника заземления между точкой его подключения к заземляемому оборудованию и ближайшей точкой железобетонной конструкции здания от длины этого проводника можно приблизительно описать формулой для двухпроводной воздушной линии передачи:

Zвх ≈ Rв tg (2π L/λ),

где Rв – волновое сопротивление, L – длина проводника заземления, λ – длина волны помехи (λ ≈ c/f, с – скорость света в вакууме, равная 300 000 км/с, f – частота помехи).

График, построенный по данной формуле для типового проводника заземления (экрана) диаметром 3 мм при расстоянии до ближайшего прута железобетонной арматуры здания 50 см (при этом волновое сопротивление составляет 630 Ом), приведён на рис. 2.

Отметим, что когда длина проводника приближается к 1/4 длины волны помехи, его сопротивление стремится к бесконечности.

Таким образом, шина земли является в общем случае "грязной" землёй, источником помех, имеет активное и индуктивное сопротивление. Она является эквипотенциальной только с точки зрения защиты от поражения электрическим током, но не с точки зрения передачи сигнала. Поэтому если в контур, включающий источник и приёмник сигнала, входит участок "грязной" земли то напряжение помехи будет складываться с напряжением источника сигнала и прикладываться ко входу приёмника (см. раздел "Кондуктивные наводки"). 

Виды заземлений

Одним из путей ослабления вредного влияния цепей заземления на системы автоматизации является раздельное выполнение систем заземлений для устройств, имеющих разную чувствительность к помехам или являющихся источниками помех разной мощности.

Раздельное исполнение заземляющих проводников позволяет выполнить их соединение с защитной землёй в одной точке. При этом разные системы земель представляют собой лучи звезды, центром которой является контакт к шине защитного заземления здания. Благодаря такой топологии помехи "грязной" земли не протекают по проводникам "чистой" земли. Таким образом, несмотря на то что системы заземления разделены и имеют разные названия, в конечном счёте все они соединены с Землёй через систему защитного заземления.

Исключение составляет только "плавающая" земля (см. раздел „Плавающая” земля"). 

Силовое заземление

В системах автоматизации могут использоваться электромагнитные реле, микромощные серводвигатели, электромагнитные клапаны и другие устройства, ток потребления которых существенно превышает ток потребления модулей ввода/вывода и контроллеров. Цепи питания таких устройств выполняют отдельной парой свитых проводов (для уменьшения излучаемых помех), один из которых соединяется с шиной защитного заземления. Общий провод такой системы (обычно провод, подключённый к отрицательному выводу источника питания) является силовой землёй. 

Аналоговая и цифровая земля

Системы промышленной автоматизации являются аналого-цифровыми. Поэтому одним из источников погрешностей аналоговой части является помеха, создаваемая цифровой частью системы. Для исключения прохождения помех через цепи заземления цифровую и аналоговую землю выполняют в виде несвязанных проводников, соединённых вместе только в одной общей точке. Для этого модули ввода/вывода и промышленные контроллеры имеют отдельные выводы аналоговой земли (A.GND) и цифровой (D.GND). 

"Плавающая" земля

"Плавающая" земля образуется в случае, когда общий провод небольшой части системы электрически не соединяется с шиной защитного заземления (то есть с Землёй). Типовыми примерами таких систем являются батарейные измерительные приборы, автоматика автомобиля, бортовые системы самолёта или космического корабля. "Плавающая" земля может быть получена и с помощью DC/DC или AC/DC преобразователей, если вывод вторичного источника питания в них не заземлён. Такое решение позволяет полностью исключить кондуктивные наводки через общий провод заземления. Кроме того, допустимое синфазное напряжение может достигать 300 вольт и более, практически 100 процентным становится подавление прохождения синфазной по мехи на выход системы, снижается влияние ёмкостных помех. Однако на высоких частотах токи через ёмкость на землю существенно снижают последние два достоинства.

Если "плавающая" земля получена с помощью устройств гальванической развязки на оптронах и DC/DC преобразователях, то надо принять особые меры для предотвращения накопления заряда в ёмкости между Землёй и "плавающей" землёй, которое может привести к пробою оптрона (см. разделы "Гальваническая развязка" и "Статическое электричество"). Пример образования "плавающей" земли показан на рис. 3.

 

Рис. 3 Пример "плавающей" земли

 

Условные обозначения:AGND — аналоговая земля; DGND — цифровая земля; Data — информационный порт модуля (вход/выход данных); Dout — дискретный выход; Сплав — эквивалентная ёмкость на землю; Iутечки — ток утечки; Vпит — клемма подключения источника питания. 

Вывод AGND модуля ввода сигналов термопар не соединён с землёй. Условно показанный разрыв в изображении модуля символизирует гальваническую развязку между его частями. Аналоговая часть модуля имеет эквивалентную ёмкость на землю Сплав, которая включает в себя ёмкость входных цепей на землю, ёмкость проводников печатной платы на землю, проходную ёмкость DC/DC преобразователя и оптронов гальванической развязки.

Величина этой ёмкости может составлять около 100 пФ и более. Поскольку воздух и другие диэлектрики, с которыми контактирует ёмкость Сплав, имеют не бесконечное электрическое сопротивление, то ёмкость может медленно, в течение минут или часов, зарядиться током утечки Iутечки до потенциала электризованных тел, высоковольтных источников питания или потенциала, связанного с атмосферным электричеством (см. разделы "Молния и атмосферное электричество" и "Статическое электричество").

Потенциал на "плавающей" земле может превысить напряжение пробоя изоляции оптронов и вывести систему из строя.

В качестве защитных мер при использовании "плавающей" земли можно рекомендовать соединение "плавающей" части с землёй через сопротивление величиной от десятков килоом до единиц мегаом. Вторым способом является применение батарейного питания и передачи информации через оптический кабель.

"Плавающая" земля чаще используется в технике измерений малых сигналов и реже – в системах промышленной автоматизации. 

Модели компонентов систем автоматизации

Для дальнейшего анализа и синтеза систем заземления необходимо представлять структуру модулей систем промышленной автоматизации. Такое представление дают модели типовых модулей аналогового и дискретного ввода и вывода, представленные на рис. 4, 5 и 6.

 

Рис. 4 Обобщённые модели аналоговых модулей ввода и дискретного вывода для анализа систем заземления: а — без гальванической изоляции; б — с гальванической изоляцией аналоговых входов; в — с изоляцией как входов, так и выходов. 

 

Рис. 5 Обобщённые модели дискретных модулей для анализа систем заземления:

а — без гальванической изоляции; б — с изоляцией входов; в — с изоляцией и входов, и выходов.

 

В этих рисунках использованы следующие обозначения:  AGND – аналоговая земля, DGND – цифровая земля, GND – земля источника питания порта связи, Data – информационный порт модуля (вход/выход данных), Ain – аналоговый вход, Dout – дискретный выход, Din – дискретный вход, Aout – аналоговый выход, Vпит – клемма подключения источника питания; разрыв в изображении модуля означает гальваническую изоляцию между "разорванными" частями. Модули аналогового ввода и дискретного вывода бывают без гальванической изоляции (рис. 4 а – пример модели модуля CL8AI фирмы НИЛАП), с изоляцией аналоговых входов и без изоляции дискретных выходов (рис. 4 б – пример модели модуля ADAM-4016 фирмы Advantech) и с изоляцией одновременно как аналоговых входов, так и дискретных выходов (рис. 4 в – пример модели модуля NL8TI фирмы НИЛ АП).

Аналогично модули с дискретными или счётными входами и дискретными выходами могут быть без гальванической изоляции (рис. 5 а – пример модели модуля ADAM-4050 фирмы Advantech), с изоляцией входов (рис. 5 б – пример модели модуля ADAM4052 фирмы Advantech) и с изоляцией как входов, так и выходов (рис. 5 в – пример модели модуля NL16DI фирмы НИЛ АП).

Модули аналогового вывода делают обычно с гальванической изоляцией выходов (рис. 6). Таким образом, один модуль ввода/вывода может содержать до трёх различных выводов земли.

 

Рис. 6 Обобщённая модель модулей аналогового вывода для анализа систем заземления.

 

В моделях на рис. 4, 5 и 6 с целью упрощения не показаны входные сопротивления, которые иногда нужно учитывать. 

Гальваническая развязка

Гальваническая развязка цепей является радикальным решением большинства проблем, связанных с заземлением, и её применение фактически стало стандартом в системах промышленной автоматизации.

Для осуществления гальванической развязки (изоляции) необходимо выполнить подачу энергии и передачу сигнала в изолированную часть цепи.

Подача энергии выполняется посредством развязывающего трансформатора (в DC/DC или AC/DC-преобразователях) или с помощью автономных источников питания (гальванических батарей и аккумуляторов). Передача сигнала осуществляется через оптроны и трансформаторы, элементы с магнитной связью, конденсаторы или оптоволокно.

Основная идея гальванической развязки заключается в том, что в электрической цепи полностью устраняется путь, по которому возможна передача кондуктивной помехи.

 

Гальваническая изоляция позволяет решить следующие проблемы: 

 

  • исключает появление паразитных токов по земле, уравнивающих потенциалы, и тем самым снижает индуктивные наводки, вызванные этими токами;
  • уменьшает практически до нуля напряжение синфазной помехи на входе дифференциального приёмника аналогового сигнала (например, на рис. 3 синфазное напряжение на термопаре относительно Земли не влияет на дифференциальный сигнал на входе модуля ввода);
  • защищает от пробоя вследствие синфазного перенапряжения входные и выходные цепи модулей ввода и вывода (например, на том же рис. 3 синфазное напряжение на термопаре относительно Земли может быть каким угодно большим, если оно не превышает напряжение пробоя изоляции).

 

Для применения гальванической развязки система автоматизации делится на автономные изолированные подсистемы, между которыми отсутствуют проводники (гальванические связи). Каждая подсистема имеет свою локальную землю. Подсистемы заземляют только для обеспечения электробезопасности и локальной защиты от помех.

Основным недостатком цепей с гальванической развязкой является повышенный уровень помех от DC/DC-преобразователя, который, однако, для низкочастотных схем можно сделать достаточно малым с помощью цифровой и аналоговой фильтрации (см. раздел "Характеристики помех"). На высоких частотах ёмкость подсистемы на землю и ёмкость между обмотками трансформатора являются факторами, ограничивающими достоинства гальванически изолированных систем. Ёмкость на землю можно уменьшить, применяя оптический кабель и уменьшая геометрические размеры гальванически изолированной подсистемы.

Распространённой ошибкой при применении гальванически развязанных цепей является неверная трактовка понятия "напряжение изоляции". В частности, если напряжение изоляции модуля ввода составляет 3 кВ, это не означает, что его входы могут находиться под таким высоким напряжением в рабочих условиях.

Рассмотрим методы описания характеристик изоляции. В зарубежной литературе для этого используют три стандарта: UL 1577, VDE 0884 и IEC 61010-01, но в описаниях устройств гальванической развязки не всегда даются на них ссылки. Поэтому понятие "напряжение изоляции" трактуется в отечественных описаниях зарубежных приборов неоднозначно. Главное различие состоит в том, что в одних случаях речь идёт о напряжении, которое может быть приложено к изоляции неограниченно долго (рабочее напряжение изоляции), а в других случаях речь идёт об испытательном напряжении (напряжение изоляции), которое прикладывается к образцу в течение времени от 1 минуты до нескольких микросекунд. Испытательное напряжение может в 10 раз превышать рабочее и предназначено для ускоренных испытаний в процессе производства, поскольку определяемое этим напряжением воздействие на изоляцию зависит также от длительности тестового импульса.

 

Таб. 1 Зависимость между рабочим и испытательным напряжением изоляции.

 

Табл. 1 показывает связь между рабочим и испытательным (тестовым) напряжением изоляции по стандарту IEC 61010-01. Как видно из таблицы, такие понятия, как рабочее напряжение, постоянное, среднеквадратическое или пиковое значение тестового напряжения могут отличаться очень сильно.

Электрическая прочность изоляции отечественных средств автоматизации испытывается по ГОСТ 51350 или ГОСТ Р МЭК 60950-2002, то есть с есть синусоидальным напряжением с частотой 50 Гц в течение 1 минуты при напряжении, указываемом в руководстве по эксплуатации как напряжение изоляции. Например, при испытательном напряжении изоляции 2300 В рабочее напряжение изоляции составляет всего 300 В (табл. 1).

Источники помех на шине Земли

Все помехи, воздействующие на кабели, датчики, исполнительные механизмы, контроллеры и металлические шкафы автоматики, в большинстве случаев протекают и по заземляющим проводникам, создавая паразитное электромагнитное поле вокруг них и падение напряжения помехи на проводниках.

Источниками и причинами помех могут быть молния, статическое электричество, электромагнитное излучение, "шумящее" оборудование, сеть питания 220 В с частотой 50 Гц, переключаемые сетевые нагрузки, трибоэлектричество, гальванические пары, термоэлектрический эффект, электролитические процессы, движение проводника в магнитном поле и др.

Государственные центры стандартизации и сертификации во всех странах мира не разрешают производство оборудования, являющегося источником помех недопустимо высокого уровня.

Однако уровень помех невозможно сделать равным нулю. Кроме того, на практике встречается достаточно много источников помех, связанных с неисправностями или применением несертифицированного оборудования.

В России допустимый уровень помех и устойчивость оборудования к их воздействию нормируются ГОСТ Р 51318.14.1, ГОСТ Р 51318.14.2, ГОСТ Р 51317.3.2, ГОСТ Р 51317.3.3, ГОСТ Р 51317.4.2, ГОСТ 51317.4.4, ГОСТ Р 51317.4.11, ГОСТ Р 51522, ГОСТ Р 50648.

При конструировании электронной аппаратуры для снижения уровня помех используют микромощную элементную базу с минимально достаточным быстродействием, а также практикуют уменьшение длины проводников и экранирование. 

Характеристики помех

Основная характеристика помехи это зависимость спектральной плотности мощности помехи от частоты.

Помехи, воздействующие на системы промышленной автоматизации, имеют спектр от нулевой частоты до единиц гигагерц (рис. 7). Помехи, лежащие в полосе пропускания аналоговых схем, имеют частоты до десятков килогерц. На цифровые цепи воздействуют помехи в полосе до сотен мегагерц. Помехи гигагерцевого диапазона непосредственного влияния на системы автоматизации не оказывают, однако после детектирования в нелинейных элементах они порождают низкочастотные помехи, лежащие в границах воспринимаемого спектра.

 

Рис. 7 Относительный уровень спектральной плотности мощности и частоты основных источников электромагнитных помех.

 

В сигнальных цепях и цепях заземления систем автоматизации содержится весь спектр возможных помех. Однако влияние оказывают только помехи, частоты которых лежат в полосе пропускания систем автоматизации. Среднеквадратическое значение напряжения (или тока) помехи Е помехи определяется шириной её спектра:

где: e2 (f) – спектральная плотность мощности помехи, В2/Гц; fн и fв нижняя и верхняя границы спектра помехи. В частном случае, когда e2 (f) слабо зависит от частоты, приведённое соотношение упрощается:

Таким образом, для уменьшения влияния помех на системы автоматизации нужно сужать ширину полосы пропускания (fв – fн) аналоговых модулей ввода и вывода. Например, если постоянная времени датчика τ составляет 0,3 с, что приблизительно соответствует полосе пропускания сигнала

то ограничение полосы пропускания модуля ввода величиной 0,5 Гц позволит уменьшить уровень помехи и тем самым повысить точность измерений, снизить требования к заземлению, экранированию и монтажу системы. Однако фильтр вносит динамическую погрешность в результаты измерения, зависящую от частоты (спектра) входного сигнала. В качестве примера на рис. 8 приведена зависимость погрешности измерений модулей RealLab! серии NL от частоты: при частоте входного сигнала 0,5 Гц (как в рассматриваемом примере) погрешность, вносимая фильтром, составляет –0,05%.

 

Рис. 8 Зависимость динамической погрешности от частоты входного сигнала на примере модулей RealLab! серии NL.

Рис. 9. АЧХ SINC3 фильтра, входящего в состав аналоговых модулей NL.

 

Наиболее мощной в системах автоматизации является помеха с частотой питающей сети 50 Гц. Поэтому для её подавления используют узкополосные фильтры, настроенные точно (с помощью кварца) на частоту 50 Гц. На рис. 9 в качестве примера приведена амплитудно-частотная характеристика (АЧХ) цифрового фильтра, использованного в аналоговых модулях NL: фильтр настроен таким образом, что он ослабляет на 120 дБ (на 6 порядков) помеху с частотой 50 Гц. Следует отметить, что динамическая погрешность свойственна всем известным методам ослабления помехи нормального вида, хотя она часто не указывается в характеристиках аналоговых модулей, что может вводить пользователя в заблуждение.

При ещё большей инерционности датчиков или контролируемой системы (например, когда датчик стоит в печи, время выхода на режим которой составляет несколько часов) можно более существенно снизить требования к уровню помех, введя процедуру многократных измерений и дополнительную цифровую фильтрацию в управляющем контроллере или компьютере. В общем случае, чем больше время измерения, тем точнее можно выделить сигнал на фоне шума.

Следует отметить, что наличие фильтра не всегда спасает от влияния помех. Например, если высокочастотная помеха, перед тем как попасть на вход модуля ввода, детектируется или выпрямляется на нелинейных элементах, то из сигнала помехи выделяется постоянная или низкочастотная составляющая, которая уже не может быть ослаблена фильтром модуля ввода. В качестве нелинейных элементов могут выступать, например, контакты разнородных металлов, защитные диоды, стабилитроны, варисторы. 

Помехи из сети электроснабжения

Рис. 10 Виды помех, проникающих из сети питания: а — от разряда молнии; при переключении индуктивной нагрузки; от радиостанций.

 

Питающая сеть 220/380 В с частотой 50 Гц и подключённые к ней блоки питания являются источниками следующих помех:

 

  • фон с частотой 50 Гц;
  • выбросы напряжения от разряда молнии (рис. 10 а);
  • кратковременные затухающие колебания при переключении индуктивной нагрузки (рис. 10 б);
  • высокочастотный шум (например, помеха от работающей радиостанции), наложенный на синусоиду 50 Гц (рис. 10 в);
  • инфранизкочастотный шум, проявляющийся как нестабильность во времени величины среднеквадратического значения сетевого напряжения (рис. 11);
  • долговременные искажения формы синусоиды и гармоники при насыщении сердечника трансформатора и по другим причинам.

Рис. 11 Изменения средневыпрямленного значения сетевого напряжения в течение суток (измерено в НИЛ АП 12.11.2005)

 

Наибольшее влияние на системы промышленной автоматики оказывают первые три вида помех. Для уменьшения кратковременных выбросов напряжения используют специальные защитные диоды и варисторы. Инфранизкочастотный шум и искажения синусоиды отфильтровываются стабилизатором и сглаживающим фильтром сетевого источника питания и не проходят сквозь паразитные ёмкости сетевого трансформатора.

Причинами и источниками сетевых помех могут быть разряды молнии при попадании в линию электропередачи, включение или выключение электроприборов, тиристорные регуляторы мощности, реле, электромагнитные клапаны, электродвигатели, электросварочное оборудование и др.

Путь проникновения сетевой помехи показан на рис. 12. Силовой или развязывающий трансформатор включён в сеть 220 В (50 Гц). Сеть представлена эквивалентным источником напряжения сети Е~220В и эквивалентным источником помех Епомехи, описанными ранее. Нулевой провод источника сетевого напряжения заземлён на главном щите у ввода в здание. Если выход источника питания тоже заземлён, что часто необходимо для целей электробезопасности, то возникает путь протекания тока помехи, показанный на рис. 12, включающий сопротивление земли между двумя заземлителями RЗемли. Основным звеном в этой цепи является паразитная ёмкость между обмотками силового трансформатора Спар1, для уменьшения влияния которой часто используют заземлённый электростатический экран (рис. 13).

 

Рис. 12 Путь проникновения помехи из сети 220 В (50 Гц) в систему заземления и общий провод источника питания.

 

Ток помехи протекает по общему проводу источника питания и заземлителю (рис. 12), создавая на их сопротивлении падение напряжения помехи, о котором речь пойдёт в следующих разделах (на рис. 12 эти участки цепи выделены жирной линией). Ток помехи фактически может замыкаться не на подстанции, а через внутреннее сопротивление других электроприборов, подключённых к электрической сети, а также через ёмкость кабеля.

Наиболее значительной помехой, проникающей в шину заземления из сети 220 В (50 Гц), являются ёмкостные токи, протекающие через ёмкость между обмоткой двигателя и его корпусом, токи между сетевой обмоткой трансформатора и сердечником, токи через конденсаторы сетевых фильтров.

Путь тока помехи через ёмкость между первичной обмоткой трансформатора и его заземлённым сердечником Спар3 показан на рис. 12. Этот ток также протекает через общий провод источника питания и заземлитель.

Наличие ёмкости приводит к тому, что незаземлённые электроприборы "бьют током". При отсутствии заземления потенциал металлического корпуса приборов, подключённых к сети 220 В, составляет от нескольких десятков до 220 В в зависимости от сопротивления утечки на землю. Поэтому корпуса приборов, включённых в сеть 220 В, должны быть заземлены.

При использовании DC/DC и AC/DC-преобразователей к источнику помехи Епомехи добавляется ёмкостная и индуктивная наводка от собственного генератора преобразователя. Поэтому в общем случае уровень помех на общем проводе у DC/DC- и AC/DC-преобразователей выше, чем в источниках с обычным силовым трансформатором, хотя проходная ёмкость Спар1 в преобразователях может быть уменьшена до единиц пикофарад по сравнению с сотнями пикофарад для обычного силового трансформатора.

Для уменьшения проникновения помехи в источниках питания используют раздельное экранирование первичной и вторичной обмоток трансформатора, а также разделение сигнальной и корпусной земли (рис. 13).

Рис. 13 Источник питания с тремя типами земель (слева направо): защитной, экранной и сигнальной. На рисунке сплошной жирной линией нарисован металлический корпус прибора, кружочки обозначают клеммные соединители. Методы соединения различных земель между собой будут описаны далее (см. раздел "Методы заземления").

Продолжение следует

Категория: Каталог статей | Добавил: tomm (16.01.2015)
Просмотров: 1102 | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Рейтинг@Mail.ru Яндекс.Метрика Счетчик PR-CY.Rank electromontag-pro.ru trustrank electromontag-pro.ru Real PageRank
Рейтинг и каталог сайтов ElectroTOP Счетчик PR-CY.Rank